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Most techniques for estimating extreme values are based on the

assumption of a parametric family motivated by extreme value limit theory.

This creates two sources of estimation error: the ordinary estimation

. variance and a bias created by misspecification of the parametric model.
In this paper approximate formulae are derived for the bhias and variance

of four widely studied estimators. This allows comparison among the

different estimators. The development relies on recent work on
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1. INTRODUCTION

Two principal methods have been developed for inference about extreme
quantiles or tails of distributions. The older is based on extreme value
distridutions for subsample maxima. Statistical aspects of this have been
developed by Prescott and Walden (1980), Hosking (1984) and Smith (1985),
amongst others. The other method is based on the Generalised Pareto
distribution for exceedances over high thresholds. This was introduced by
Pickands (1975) and developed by Davison (1984), Smith (1984) and Hosking
and wallis (1987), though there is a much larger literature of related

techniques in hydrology (NERC 1975).

A major issue with both of these methods is that certain limiting
distributions are wused as statistical wodels. These limiting
distributions are not exact in finite samples, and so there are two
sources of error. One source is the usual variance of estimators of the
model. The other source is a bias created by the fact that the assumed
model is not exact. This creates a bias versus variance conflict of the
kind familiar from density estimation, nonparametric regression, and other

statistical techniques involving smoothing.

Previous studies of this feature have becen Davis and Resnick (1984)
and Smith (1967) on threshold methods and Cohen (1987, 1988) on classical
extreme value methods. Joe's (1987) results partly unify the two methods.
There is a long literature on estimating an index of reqular variation, of
which Hall (1982) and Hall and Welsh (1984, 1985) have done most to make
the connection with smoothing problems. Recent references on this include
Csorgo, Horvath and Revesz (1987), Reiss (1987) and Bierlant and Teugels
(1987). Simulation results have been given by Boos (1984), Gomes (1986)

and Joe (1987),.
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One reason why the literature on this topic has been so disjointed is
that, although there has been much literature on rates of convergence in
extreme value theory, no unified approach has emerged. In particular, the
three domains of attraction tend to be treated entirely separately, so
that the literature is three times as long as it should be. Recently,
however, Smith (1988) has proposed a new approach bringing together the
three domains of attraction. 1In the present paper, my aim is to show how
this new approach leads to explicit (approximate) expressions for the bias
and variance of estimators of extreme quantiles. The principal features
which distinguish this approach from its predecessors are that the three
domains of attraction are dealt with together, and that the method applies
to a very wide variety of estimators. To illustrate this, four particular
estimators are studied in detail. The results may therefore be used to
compare one estimation method with another, as well as providing a
theoretical resolution of such questions as choosing the best threshold.
They may also suggest automatic or adaptive techniques of, for example,
choosing the threshold, but I do not consider this aspect in any detail.
Por this reason the results should be viewed as providing general
qualitative guidelines rather than determining a specific procedure for a

particular set of data.

The organisation of the paper is as follows. Section 2 reviews the
development of Smith (1988) on probabilistic approximations to extreme
value Adistributions. Sections 3-6 develop, in turn, bias and variance
approximation for four previously studied methods of estimating extreme
quantiles:

(1) estimation based on the exponential distribution for exceedances
over high thresholds,

(ii) estimation based on the Generalised Pareto distribution for




exceedances,
(iii) estimation based on the Gumbel distribution, and
(iv estimation based on the Generalised Extreme Value distribution.

Section 7 concerns the application of these results to theoretical

comparisons among the procedures, in particular giving new results for the
comparison of (i) and (iii). Finally, in Section 8 we give numerical

results and comparisons with existing simulatiomns.

2. EXTREME VALUE APPROXIMATIONS

The present section is a summary of the results of Smith (1988).

The starting point is the representation

x
) -log P(x) = exp{-f -it-:-—] :r X < X ¢ x" ' (2.1)
X %O *

where (x',x*) is the range of the distribution. This is for the classical

approach based on extreme value distributions; for the threshold approach

we replace -log P(x) by 1-F(x) in (2.1). The two representations lead to

the same results except for a few distributions, (e.g. uniform,

exponential) for which the convergence is very rapid.

From (2.1) we deduce

-log F(u+xp(u)) - exp[-]x _ e du}
~log P(u) 0 ®(utsae(u))

}'1/¢'(Y)
(2.2)

- {1+XO'(Y))

for some y between u and u+xé¢(u), by Taylor expansion and the mean value

theorem. This assumes ¢ continuously differentiable.

e -
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Suppose now
lim ¢'(x) = Yo (—® ¢ ¥ ¢ ®) (2.3)
2«
This is essentially von Mises' condition for the existence of a limiting
extreme value distribution. We now have three levels of approximation.
First approximation Replace ¢°‘(y) in (2.2) by Yo Now if ag, bn are

defined such that -log F(b,) = n~1, a = ¢(b,), then replacing u by b, in

(2.2),
-1/7,
lim -~n log F( a x+b,) = (1+yyx)
n->w
and hence
-1 .
lim FMapx+b,) = exp(-(1+y,x) /y°j . (2.4)
nw
valid wherever 1 + YoX > O. This is the Genexalised Fxtreme Value

distribution. In the special case Yo~ 0. the right hand side of (2.4)

reduces to exp(—e *), commonly called the Gumbel distribution.

Second approximation Replace 4'(y) in (2.2) by ¢°'(u). Then, defining a,

and bn as above, and Yn " ®'(b,), we have the aproximation

—1/’5} (2.5)

F(a,x+b,) * exp{—(1+ynx)

which in general improves on (2.4). This is the penultimate

approximation. In the case Yo= O, use of the penultimate approximation
generally improves the rate of convergence (Cohen 1982, Gomes 1984). This
is not so when Yo* O but even here the quality of approximation for
moderate n is generally improved by the penultimate approximation (Gomes

and Pestana 1986, Smith 1988),
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Third approximation The approximation may be further improved by
expanding ¢°. However, some care is needed to do this in a sufficiently
general way. Simple Taylor expansion does not suffice. Smith (1988) -

proceeded under the assumption

. $'(u) (o' (uiwep(u))-¢'(u))
Jim = ¢ (2.6)
utx” g(u)h,(1+we’(u))

for each w such that 1 + YoW > 0. Here p and ¢ are real numbers, g is a

non-negative function, and hp is defined by

xP-1
_, pP#AO0,
x P

h(x) = [ vvlav - (2.7)
1
logx, p=0.
This assumption covers most common distributions. PFor instance:
(i) Assume -log F(x) = Cx %1+ Dx P +o(xP)) as x?w. This includes

such cases as Pareto, Cauchy, t and P distributions. In this case y, = al,

p= -, g(u) = uB, c=-pp% a3(p-1).
(ii) Assume x* ¢ ® and
~log F(x) = C(x"—x)® (14D(x"-x)P + o((x"—x)P)}
as x t x". Then Yo " -a™1, p =B, glu) = (x*-—u)p, c = -pp? 0"3(B+1).

This includes most distributions in the wWeibull domain of attraction.

(iii) Assume y,= O under what Cohen (1982) called cla; N, which includes
most distributions in the Gumbel domain of attraction. In this case it is
valid to make a Taylor expansion of ¢. Equation (2.6) holds with
arbitrary p, g(u) = ¢(u)|¢"(u)l, c = t1, This case covers the normal,

lognormal and gamma distributions, amongst many others.

e
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In all three cases, additional differentiability assumptions are

involved, made precise in Smith (1988).

Substituting from (2.6) into (2.2), defining a,, b,, ¥, as before and

rn = g(b, ), routine but tedious manipulations lead to

-—

~ v
F(a x+b ) ¥ exp[—(1+xy,) ”n (14exH (%, 7)) ) (2.8)

whenever 1 Xy > O, where

h,(14xy )+ph_, (14xY)—-(p+l)log( 1+xy)
p(p+1)ys
Hy(x,y) = (2.9)

+ 1+xy>0

(o] ’ 14+xy<0 .,

- The rates of convergence for the three approximations are O(y,- Yo)
for (2.4), O(r,) for (2.5) and o(r,) for (2.8). Under mild additional
assumptions, these rates hold pointwise, uniformly over all x, in total
variation norm, and finally in Hellinger distance. The Hellinger distance
between two distributions with densities f and g is defined by
1 A 2 a

R(£,9) = [[(£23(x) - g%(x)) dx]? .
The use of Hellinger distance in the context of extreme value
approximations was first proposed by Reius (1984) and, as will be seen in

later sections, greatly simplifies the proofs of statistical results,

In the case of (2.8), there is a small problem in that the right hand
gside may not be a distribution function. In this case, however, a slight
modification does converge in Hellinger distance at rate o(r,). The
principal additional assumption for this is that Yo *> —1/2, an assumption

which is natural in view of the regqularity conditions for maximum

]



likelihood estimation (Smith 1985).

Por the threshold approach, -log F is replaced by 1-F in (2.1) and ;

(2.2). We then have three approximations for {1-F(u+xe(u))}/(1-F(u)}:

-1/
irst O (1+'y°x) % , for x>0, +y x>0, -0y <o, This is
the Generalised Pareto tail.
. -1/7y
Second approximation (1+y,x) , where y, = ¢'(u).
. -1/
Third approximation  (14+y,x) Y {1 + cr H (x,¥,)) (2.10)

where r, = g(u).

The errors of these approximations are, respectively, 0( Yu Yol

o(r,), o( r,). and these are valid for Helilnger distance as before.

3. ESTIMATION BASED ON AN EXPONENTIAL TAIL

In this section we consider the estimation of an extreme quantile
under the assumption that the conditional distribution of exceedances over
a high threshold is exponential. By the previous section, this is the
same as a Generalised Pareto approximation with y = 0. The method is

effectively the same as that of Weissman (1978).

The general framework, here and throughout the rest of the paper, is
that we have N independent observations from a common unknown distribution
function F, and we are interested in solving 1-P(q)=p for given small p.

Pix a high threshold u, let k denote the (random) number of exceedances of

a
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u, and let Yyooeoo Xy denote the excesses over u. Given k, we have
Yy,.. .,Yk independent with common distribution function
~ F(uty)-F(u) . - Y
_<__z>__<__’.~1_exp[_ } y >0 (3.1)
1-F(u) $(u)

under the Pirst Approximation. Here we assume y = O.

The method that then suggests itself is to estimate & = 1-F(u) by k/N

and then fit an exponential distribution toé L SYRERTS W) estimating ¢ by the

sample mean ; These approximations lead to the estimator
&=U'+;log[£-] (3.2)
Np

assuming q » u. Except for changes in notation, this is identical to
equation (4.3) in Weissman (1978 ), except that Weissman took k rather than

u as predetermined.

An approximation for the variance of & may be made by the usual delta
method, assuming the exponential distribution of the excesses and an
approximate Poisson distribution for k. This leads to

¥2 2

¢ -~ ® 2
Ne(lﬂl ) (3.3)

- 2 X
var(q) & - 1o92<§5) +

x X

where n = log(e/p).

The next step is to approximate the bias of & due to misspecification

of the exponential distribution. In view of the results described in

. Section 2, the obvious thing to do is to use the next order of
approximation, i.e. the Generalised Pareto distribution, in place of

(3.1). In other words, we replace the right hand side of (3.1) by
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-1/y
w] (3.4)

1 - {1 + ——
®(u)

where y = ¥, = ¢'(u). Now, the mean of a Generalised Pareto distribution .

with parameters y and ¢ is (1—y)‘1¢, assuming y<1. Moreover, under the
Generalised Pareto model the true quantile would be u + ¢y l(e”M-1).

Hence

e’MN-1

E(q-q) = o[ 1 + o(y)}

1y
= oyn{1-v2 + o(1)} . (3.5)

Combining (3.3) and (3.5) leads to an approximation for mean squared error

- 1402 2
MSE(qQ) ® ¢%(u) [TZ— + anz[l - 2] . (3.6)

So far, this development has been heuristic. I shall now outline a -
framework within which these formulae appear as rigorous asymptotic
results. The intention of this is to clarify the status of the preceding
approximations, as well as indicating a starting point for possible

further theoretical development.

Suppose N Y @, U = Uy > x, © = 6y > 0, NOy » @, 1 = 9 n,, where
N N N 2> Mo

0 ¢<ny <o, Lot oy = (uy)., YN " ¢'(uN), Py = 6yexp(-ny). Suppose also

L
Yu(Ney)? > & (3.7)

where 8 is finite (possibly O0). Define

2 2
v = 51‘9;(1+n,,2). (3.8) -

1
Consider the fo;\owing hypothetical model. For each N, ky has a binomial

distribution with parameters N, on and, given kN = k, the excesses

Y3....,Y) are independent Generalised Pareto with parameters e YN

—————
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4. ESTIMATION BASED ON A GENERALISED PARETO TAIL
The method of Section 3 will now be extended to one in which the
exponential distribution (3.1) is replaced by the Generalised Pareto
distribution for the purpose of constructing the estimator. This was the
method studied in detail by Smith (1987), but the new probabilistic
approximations of Section 2 allow the results to be developed in a much

more coherent fashion.

Suppose, then, that (3.4) is used in place of the approximation in
(3._ 1), and that estimators §, 3 are obtained for the parameters vy, o.
Throughout this paper it will be assumed that maximum likelihood is used
as the method of estimation, though there is nothing to stop similar
calculations being made for other estimators, such as the Probability
Weighted Moments estimators of Hosking and Wallis (1987). As before, the

exceedance probability 6 is estimated by k/N, and this leads to a quantile

estimate
~ Aa_l A a -~ k
q =u+ ¢y “{exp(y n) ~ 1} where n = log —’E’ . (4.1)

In this section y, (from (2.3)) is arbitrary, but we assume Yo > ~1/2 for

regularity.

Applying the delta method, with an approximate Poisson distribution
for k and the covariance matrix of (;', 3) derived from the Fisher

information matrix (Smith 1987), we obtain the approximation

a N 14y 22 ¢2e2"M
var(q) ~ *N—e— {29 Dl - zwlbz + (1+‘)’)Dz} + -°-N—e-—— (4.2)

where y = v, = ¢'(u), ¢ = ¢(u), n ~ log(6/p) and

3 e’N-1 a SALINNY oSS |
Dl--g- ,Dz--gr-.»ﬂe———--» . (4.3)
[ Y ay Y




11
Define a" by (3.2) with suffices N added where appropriate. Also let q;

denote the exact quantile under the hypothetical model, i.e.

Qy = uy + dylexp(yyng) — 11/7y -

For this model it is easy to make all the approximations rigorous and it

follows that

Pulugt(ay - ay) < x) > ¢[x - ano[l - 2°] [1 + nﬁ]-%} (3.9)

where & is the standard normal distribution function. Here Pl: denotes the

probability measure of the hypothetical model.

The hypothetical model differs from the true model only in the
distribution of exceases over the threshold. By the results of Section 2,
the Hellinger distance between the true and Generalised Pareto
distributions is of o YN)‘ Moreover, the Hellinger distance between two
product measures grows in proportion to the square root of the number of

components (Reiss 1984), so the Hellinger distance between P; and the true

1
probability measure, Py say, i8 of o(ky® yy). By (3.7), this tends to 0.
Since Hellinger distance dominates total variance distance, it follows
that Py(Ay) - Py(Ay) » O for any sequence of events {(Ay). Hence (3.9)

remains true with Py replacing P; and the true quantile qy replacing q;

what this says, in effect, is that probability calculations based on
(3.3), (3.5) and the normal distribution, are asymptotically correct.
This avoids the direct question of whether (3.6) itself is valid as an
asymptotic approximation, something which involves additional
moment-—-convergence technicalities of the kind developed in Section 2.5 of

Goldie and Smith (1987).
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To approximate the bias of a. the method is to use the higher -order

approximation (2.10). Let us rewrite this in the form

P(uty) - F(u) [ YY]~1/’[ [Y ]}
N1 - = : -, ) 4.
1-F(u) 1 1+ 1+ eﬂp Py Y (4.4)

where € = ¢, = cg(u), and take the right hand side of (4.4) to be exact

over the range on which it is a valid distribution function.

The bias of 3 and ; are calculated by the method given in Section 2

of Smith (1987), which leads to the approximation

¢ - ¢ -1 og —
E * M E %% (4.5)
Yy-v dlog g(Y)
ay

where g is the Generalised Pareto density, M the Pisher information

matrix, and the expected values are calculated under the model (4.4). Now

-1 202 -o
M = (1+y) ’
- Ity

Slogg(y) _ 1 1 [z“][u’z]“
a¢ oy o ly ¢ )

alog g(y) 1 [ w] 1 [1 ] [ W]'l

=227 - logjr + ==} ~ = |- + 1]{t ~ {1 + — . (4.6)
ay ;2 o9 L Yy v ®

The range of y is O<y«m if y»0, O<y<-y 1 if y<0.

Suppose Y has distribution function (4.4). Define U to be
(1+v¥/6)™/7,  Now

E{(14v¥/9)F) = E{u™*] = 149r jl w1 plucu) au .
0

Writing out the distribution function of U and using the identity

—vJ--ll-lIIllIlII-..............l..l..l...l..lll.ll.l.ll.llll..lllllll...ll..llll.lllli
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1 Y
[ wrr h(uY)au =
o (1-yr-yp )(1-yr)
we deduce
1% 1
E [1 L 20 - + ntdd .
¢ 1-yxr (1~yr-yp Y(1-yr+y)(1-yr ¥
The conditions required for this are yr<i, yr+ypci. Taking the special
cases r=l, r=—1 and the limit r»0, we deduce
{3109 9(‘[)} €
E{—— -
-1 ) O( L+y-yp )( 1+y)( 1+2y)
E{aloq q(Y)] - €(3+2y-2yp)
ay (1+r=yp)(1-yp)(1+y)(1+2Y)
Hence from (4.5) we have
- ~ &
E{(¢ — ¢} ~ -~ —_,
( 1+~yp)( 1-~vp)
A o~ &( 24+y-yp)
E{y - v) ~ (4.7)
{ L+—yp)(1-yp)
Using (4.7) with a Taylor expansion in (4.1), we have
- ey 2+y~yp )D,—4D
E(Q) X u+ e s &23YTYPID, 40,
Y (1+y=yp)(1-yp)
Finally, for the true quantile under (4.4) we have
e’M-1 e’N-1
qQ=u+¢ +e¢e7’"ﬂp -—-——,y]+o(e)
Y
and hence
- ~ (24~yp)D,—0D e’y
E(q - q) % e 2 1-oe"“ﬂp[ .y]
(1+y-yp)(1-¥p) b4
= ¢ ¢ B(y,p,n) (4.8)

where
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B N 1 (24 ) [nem ALY ] e¥N-1
e - Y- - - T
YR e —ve)(1-vp) IS v? y
yn_
- em Hp .e___.l , -y] - (4.9)
y

Combining (4.2) and (4.8) one can obtain an approximation for the mean

squared error. This can be used as a basis for deciding such questions
as the optimal choice of threshold and whether, in the case of Yo=0. the
method of this section is preferable to the method of Section 2. Such

questions are discussed at length in Smith (1987).

This may all be made rigorous by a similar process to that in Section
3. Making the same definitions as there, plus €y = cg(uy), let Y2 denote
the approximation to the variance of c‘iN, obtained from (4.2) and (4.3).
In place of (3.7) assume

-1
lim v oy ey B(yy.p,ny) = 8 (4.10)
No N
where 8 is finite. Since yy and Ty are converging to constants, this

' 1
limit will exist whenever kN‘ €y converges. Consider a hypothetical model

in which the approximation used in (4.4) is taken to be exact. Then all
the preceding steps can be deduced by standard asymptotic arguments. The
Hellinger distance between the hypothetical and true models tends to O,

leading to

pu[w;l (Gy ~ qy) < x} > ¢ (x-8) (4.11)

where Py is the true probability model. As before, this has the
interpretation that probability calculations made on the basis of (4.2),

(4.8) and the normal distribution, are asymptotically valid.
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s. ESTIMATION BASED ON THE GUMBEL DISTRIBUTION

We now consider a classical extreme value procedure in which the
sample of size N is divided into roughly k blocks of size n, and one of .
the classical extreme value distributions fitted to the block maxima. 1In

this section we assume the Gumbel distribution
G(y) = exp{-exp{—(y-n)/c}], - <y < » . (5.1)

This model only makes sense if it is the correct limiting distribution,

i.e. if y,=0, and we assume that throughout this section.

If (5.1) is valid for G = F® and we are interested in the p-upper

quantile of P, then
q = u — olog [~log((1-p)"}] . (5.2)

In limits as mw, p?0, np = Np/k » e ", (5.2) simplifies to q = u+on,

which suggests the estimator
a=u+an, (5.3)

where i, 0 are the maximum likelihood estimates based on a Gumbel

distribution for block maxima.

In the following ' denotes the gamma function, ¥ = r'/f the digama
function and ¢ the Riemann zeta function. Por -~¢'(1) = 0.5772156649 we
write ¥ (Euler‘s constant), in place of the more usual ¥y, to avoid
confusion with the shape parameter. Also Y'(1) = ((2) = n2/6, Y1) =
-2{(3) = -2,404113806, Y"'(1) = 6L(4) = n’/ls (Abramowitz and Stegun,

1964). The inverse FPisher information matrix is

————
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112 ~ 2 ~
c + (1-y) 1-y
M1l = 6o (5.4)
‘;z .
1-y 1
(Gumbel 1958), and hence
var(q) = o? [1 ¢ 2 (1-y# )2]
q X "2 y+n
o2
== (1.10866 + 0.51404n + 0.60793n%) . (5.5)
To study the bias of q, we embed the Gumbel distribution in the
Generalised Extreme Value family
-1/y
( e
G(y) = exp[—{l + Y—Y—;—)} ] (5.6)

where, for the approximation to P", we take u =b,, 0 = a,, ¥ = y, as in
Section 2. The method is similar to (4.5), in that the expected values of
the derivatives of the Gumbel log likelihood, with respect to u and o, are

evaluated under (5.6).

If Y has distribution function (5.6) and density g(y) = g(y:u,9.7),
then we may write
2

[+
Y-u+—(e”z—1)-u+cz+y—:-z——+...
b4

where Z has a standard (u = 0, ¢ = 1) Gumbel distribution. Writing

2 1 | Y- 1 2e—%
b (109 g(Y,“Icio)) - - 1-9’@[— “_&]] = - [l‘e‘z + Zz ° + 0(72 )] ’
au a a -4 2

) 1 | Y-p Y-u
— (log g(Y¥;u,0,0)} = - {-1 + —- [‘L - expl- — }
ac c

b4

1
=-1+z- Ze Z 4 5 (2% - 227 % + 23 e7Z) + 0(¥?))




and using the formula
e{zfe™®%]} = (~1)F r{T) (14s) ,
we find, to first order in vy,

2
a b4 " b4 n ~ ~
E[- log g(Y:u.a,O)} = — T (2) = — [~ -2y + 72]
au 20 20 |6

= 0.41184 14 ’
(-4

a Y " " "e
B[- log g(vm,c.O)} =~ {r"(1) - r"2) - " (2)}
o 20

y ~ v” "’2 ~ ~3
= — {27 -V (1) -2 -[— - 3](1*7) - (1-y) ]
20 2

Y
= 0,33248 - .
g

A calculation similar to (4.5) then leads to

I 0.54205
E{ &« vyo .
G-o 0.30798
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(5.7)

(5.8)

As an aside, it should be pointed out that (5.8) is identical with Theorem

1 of Cohen (1987) when the mathematical technicalities of the latter are

disregarded.

Application to (5.3), and comparison with the true quantile under the

Generalised Extreme model, leads to the approximation

E(qQ - Q) ¥ y 0 (0.54205 + 0.30798n - 0.5n%) .

(5.9)

As in previous sections, these calculations may be made rigorous within a

suitable asymptotic framework.
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6. ESTIMATION BASED ON THE GENERALISED EXTREME VALUE
DISTRIBUTION
The estimator is developed in the same way as in Section 5, but the
Generalised Extreme Value distribution (5.6) is used in place of the
Gumbel distribution (5.1). It is not necessary to assume Yo=0, but we do

take vy > —1. The estimator is now taken to be

LY

q=4n+0 vyt (exp(y n)-1} (6.1)

with maximum likelihood estimates ji,0,y, fitted to the 'k block maxima.

The Fisher information matrix has been given by Prescott and Walden

(1980) in the form

M= "—'ﬁ Tl% --63 (6.2)

m
o &} 23 m
p p 33
r(2+y)-P
where myy = P, my, = ——-;———,
= [Q p] ! {1-2I( 24y)+P}
m B e e - — ¢ L I — y
13 y y ma2 ¥2 '

9

G d) N

P = (1+7)2 r(1+2y) ,

1+y
Q = I'(2+y) {W(l"‘)') + —‘;- }
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Here I' and ¢ are the gamma and digaiqma functions and ¥ is Euler’'s

constant. Hence we deduce

- T ‘-1
var(q) ~ - R" My R (6.3)

where has entries (m;:) (i.e. (6.2) with o=1), T = (D,,D,,D,) and
i3 R 1:D2.D3

aq 3aq e
Dln—-ll Dza-—-.:——————'
au ac y
(6.4)
Y.
Y. LA S
g Y

The values of ¢ and ¥y are here taken to be those appropriate to the

approximation of P?, i.e. ¢ = a;, ¥ = v, in the notation of Section 2.

The bias of q will again be computed by embedding the Generalised
Extreme Value distribution in a 1larger family, here (2.8). More

precisely, consider the extended family

y- -y —
G(y) = em[-{l + ny) ] {1 + eH, s .7”] (¢.5)
g [+ 4

with five parameters u,o,y,p,€¢. This is used as an approximation to
P(y), with u = b,, 0 = a,, ¥ = ¥,, € = cg(b,). A8 in Section 4, it
suffices to define (6.5) over the range within which it is a wvalid

distribution function, setting G(y) to be 0 or 1 outside this range.

By analogy with (4.5), the biases of the parameter estimates are

given by
[ 2log g(Y) ] ’
B-n op
E o-c ~M E 31og 9(¥) . (6.6)
ac
Y- dlog g(Y)
L 8y

‘:-—_
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where M is the Fisher information (6.2), g is the Generaliscd Fxtreme
Value density and Y is distributed according to (6.5). The main task is

to evaluate these expectations in the limit as € » 0.

Pirst, note that

alog g(y) _ 14y [1 . &:ﬂ}“ _ Y(y-H)
au G ‘

y(y-p )}'1/ r1
g

[ o
PR
[

g

alog o(y) _ 1 [1 _ {1 . y(y—_u_)}‘VY] _ 1 alog g(y)
ac oy o y au !
2log g(y) 1 1 [ Y(Y—#)}
AN S4 - — + -, log{1 + —
ay y » e a
-1/y -
1 [1 . Y(Y“ﬂ»)} log[l R4S 4 u)} _ g 8log oly) (6.7)
c o y o
v? a

Suppose a random variable Y has distribution function (6.5).

Inverting (6.5), we may represent Y in the form

e?%-1

g YR eYz[z tyef, [——, 'y] + O(ez)}
y

o

where Z has a reduced Gumbel distribution. Substituting in (6.7) and

discarding terms of O( ez), we deduce

dlog g(Y) (1+y)e Y2 —o~(1+y)Z

o o

_ (14y)en, [Ye-'yz _e—(1+y)z} )
g

al Y 1 a1 Y 1 ceeZp
cggY)  1aogg¥) i . o,  ee?H
oy

a0 y au

dlog g(Y) + ?_ dlog g(Y) -
ay Yy o

1 eH
- = (1-2+Ze"Z) » =R {1 + 7% —e“z] (6.8)
% y
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e¥%-1

where we have written Bp in place of Hp[——;—— . y}
From the aefinition of Hp in (2.9) and using (5.7), we deduce
YZ_ (-1)¥
E{2F e 32 g [e . y] - r{Tr) (1+s-py)

[ Pl v pZ(pt1)y?
- () (148) + p2(r(T) (148)-r(T) (14s+y)} + p(pt1)y M) (145)],
(6.9)

when =0, all the expressions in (6.8) of course have expectation 0,
as is readily verified directly from (5.7). We therefore evaluate

expectations of the O(€) terms in (6.8), using (6.9), to deduce, as € » O,

! Y
E =9 9 )} .2 P(y.p) .
L ou o
[3) Y « 1
E __OigL_)} ~ = {Q(Y.p) - P(v.p)} '
L oo g b 4
[@log Q(Y)] [ QA v.pP) P(Y.P)}
Ej————} ~ &{R(Y,p) - + —1} . 6.10)
ay 7:P) y v ¢
where
{4 ) 2y (1 W(ity—yp) - r(1+y)
Y.p pn rpeve ~Yp () y
+ P2 (F(1+y)-(1+y)L(142y)) + p(p+1>y(r(1+y)+r'(1+m] ,
1 ~
,P) = rz ~1 + p2(1-I(2+ + 1)y(1 .
Av.pP) ;2(;:;;;; [F(2-yp) | (2+y)) + p(pH1)¥(1-Y)]
1
,p) = r(1 + pr(14y)-p~1) — r'(2-
R(Y,p) ;zz;:;;;; yo{[(1-yp) + pr(1+y)-p~1} (2-p7)
~ 2 ~ "2 ~ ~
+ 1yp? (10 (247)) = PP+ - 2y+v2)| . (6.11)

e ———
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We have used the relations I''(1) = -y, I''(2) = 1-y, I'"(2) = 72/6 — 2y+y2.

Equations (6.6) and (6.10) may be combined into

( A-p)
g
g -0
E ~ € R(v.p) (6.12)
[+ 4
y-v
where \
P(v,P)
P(v.p)
-1 Ay,p) - ——
B(y.p) = M, Y ,
v.p)  P(y.p)
R(Ylp) -~ Q( + y

M, being as in (6.3).

We now apply these results to calculate the bias in &. From (6.1)
and (6.12) we deduce
R ceY"-1 P
E(q)~u+-—;~—+ e R° R(r.p) (6.13)
where P is as in (6.4). We also have, from the inverse of (6.5), that the

true quantile under (6.5) satisfies

~ eml em-1
q¥u+o + ec eM np[ , y] (6.14)
Y
Combining (6.13) and (6.14) we have
- ~ o n eY-1
E(q-q) ~ ediR” R(7.p) ~ " H, " i . (6.15)

These aproximations may again be made rigorous using arguments similar to

those in previous sections.

S ———
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7. COMPARISONS OF THE METHODS

The results of the preceding four sections may be applied to a number
of questions concerning comparisons among the methods. Among these
questions are:-

1. Choice of threshold (threshold methods) or of block size
(classical methods).

2. Choice between two—parameter and three-parameter approximations,
assuming Yo=0.

3. Choice between the threshold and classical approaches.

In each case, a meaningful comparison must Lake Lhe bias as well
as the variance term into account, as otherwise it would be possible to
achieve very high accuracy by taking the threshold very low or the block

size very small.

Problem 1 has been considered by Pickands (1975), Hall and Welsh
(1985) and Smith (1987) in the threshold case, Cohen (1987, 1988) in the
classical case. Problem 2 was also studied by Smith (1987) in the
threshold case, Cohen (1988) in the classical case. Problem 3 has been
considered by Cunnane (1973) and Rosbjerg (1985) in the hydrology
literature, and in a preprint by J. Husler and J. Tiago de Oliveira, but
these authors have considered only the variance of the estimators and have

neglected the bias.

To illustrate how these ideas may be developed, I consider here the

comparison of the methods of Section 3 and 5, assuming y, = 0.

Consider first the threshold model with exponential exceedances.

Assume the total sample size N and the desired tail probability p are
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fixed. Then equation (3.6) may be written in the form
2 2
- 1+
MSE() % 62 [—i-'-’—+v2n2 [1—2] ] (7.1)

where k = N denotes the expected number of exceedances of the threshold u

and ¢ = ¢(u), ¥ = ¢'(u), n = ~log(Np/k).

Similarly, under the Gumbel model of Section 5, equations (5.5) and

(5.9) lead to

1.10866 + 0.51404n + 0.60793n%
x

MSE(q) % o2 [

+ ¥%(0.54205 + 0.30798n - o.snz)zl (7.2)

where ¢ = &(b,), v = ¢'(b,), n = -log(Np/k), n = N/k and b, satisfies

-log F(b,) = n1,

If k is fixed then u in (7.1) and b, in (7.2) are (almost) the same;
hence so are ¢ and ¥y in the two equations. Moreover, over the range of
values of k which atg of interest, both ¢ and y vary only slightly, so we
may effectively treat these as constants. (Precise justification of this
last statement will not be made, but the key point is that
d(utyd(u))/d(u)>»1, o'(utyd(u)/d'(u)>1, as urx® for fixed Y. These

Properties follow from the assumptions made in Section 2).

It follows, then, that we may compare the two procedures by directly
comparing the expressions (7.1) and (7.2), treating k as a free parameter.
The comparison depends on N and p only through the product Np. As an
example, Pigure 1 shows the two mean squared errors plotted against k for
Np=1, ¥=0.1, ¢=1. The minimum values are 0.494 for the Gumbel procedure

at k=23, 0.462 for the threshold procedure at k=42. Thus the optimal k is




—-———r

26
almost twice as large for the threshold procedure as for the Gumbel
procedure, and the ratio of minimum mean squared errors is 1.07 in favour

of the threshold procedure. In comparative terms, very similar results

were obtained for other values of Np and y which were tried.

In the papers cited earlier, the comparison between the two
procedures was based on variance alone, under the assumption that the same
k is used in each. There is no reason, however, to make such an
assumption. The present study thus favours the threshold method so long
as k is chosen optimally (or nearly optimally), though in view of the
asymptotic nature of the result and the fairly small differences between

the procedures it would be wrong to read too much into this conclusion.
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8. COMPUTATIONAL RESULTS.
This section describes numerical comparisons of all four procedures

p for a number of parent distributions.

Simulation studies of similar questions have previously been
published by Boos (1984), Gomes (1986) and Joe (1987). Boos compared the
exponential method of estimating extreme quantiles with the nonparametric
quantile estimates, for a variety of values of k. Gomes made a comparison
of the Gumbel and Generalised Extreme Value distributions for estimating
extreme quantiles in the classical approach to extreme value theory, when
the limiting (ultimate) approximation is Gumbel. Her results generally
support the use of the Generalised Extreme Value distribution, especially
for estimating the more extreme quantiles. Joe made a number of
. comparisons of bias and mean square error for all four procedures studied
in this paper. Joe concluded that, in general, estimation based on the
Generalised Pareto distribution is slightly superior to that based on the
Generalised Extreme Value distribution, but that, in all cases it is

important not to take k too large.

Some attempt that has been made to rapraduce the rosults of these
three papers using the approximations of Sections 3-6. My approximations
support their broad conclusions but do not reproduce their detailed
numerical results. This is probably because the sample sizes are too

" small for the asymptotic results to be reasonable. For instance, Joe
assumed total sample size N=600 of which a typical run was based on k=30
blocks of size n=20. In the following discussion I assume a sample size
N=10000. Although this is much larger than the sample sizes in the earlier

studies it is not at all unreasonable for many applications in the

hydrology/mt{roloqy areas.

_
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Pigure 2 plots the root mean squared error for the estimator of the
1/10000—quantile, (i.e. p-lo"), based on N=10000 observations, calculated
using the approximations in Sections 3-6, for various parent distributions
and across a wide range of k. Corresponding calculations were also made

for other quantiles with generally similar results.

One property that is sametimes observed with these calculations is a
*bias-—cancellation® phenomenon - the bias becomes 2zero owing to a
cancellation of the terms contributing to it. This is observed in
FPig.2(a) which is based on the standard normal distribution for the
observations from which the sample is drawn. The bias for the Generalised
Pareto method is zero near k=2100 and that for the Generalised Extreme
Value method near k=2300. This results in an unusual shape of the two
curves, with the apparently optimal k very large. From a practical point
of view it would be unwise to rely on being able to exploit the bias
cancellation and the most significant feature of PFPig.2(a) is that the
Generalised Pareto method does better than the Generalised Extreme Value
method for most of the range of k. The other two methods are not even
shown because their mean squared errors are far larger. In contrast,
Pig.2(b) shows the four plots for the lognormal distribution (o=1). In
this case the Dbias comparisons again favour the Generalised
Pareto/Generalised Extreme Value procedures, but the variances are much
lower for the exponential/Gumbel procedures, with the exponential coming
off best. PFig.2(c) shows a gamma distribution (scale parameter 1, shape
parameter 5) reflected about the origin - this comparison would also be
valid for inference about the lower tail when the parent distribution is a
three-parameter gamma. The exponential and Gumbel procedures are not
applicable here because the reflected gamma distribution is not in the

Gumbel domain of attraction. 1In this case the Generalised Pareto method
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does better for large k, the comparison being rather similar to Pig.1. A

comparison for the upper tail of a t, distribution (Fig.2(d)) leads to
rather similar conclusion® except for a rather drastic bias cancellation
effect at the right hand side. Finally, the Weibull distribution function
1 - exp{—-(x/B8)%} was tried, with a=0.5, B=0.1 in Fig.2(e), a=1.5, p=1 in
Fig.2(f). Pig.2(e) shows the Gumbel and exponential procedures dominant,
largely because the variances again dominate the comparison. In contrast,
Fig.2(f) shows the Generalised Pareto/Generalised Extreme Value procedures
dominant. In comparing these two Weibull distributions, it may well be
important that the o=0.5 case is heavier—tailed than an exponential
distribution and in this respect comparable with the lognormal, while the
oa=1.5 case is lighter-tailed than the exponential distribution and
therefore comparable with the normal. The classification of distributions
. into lighter than exponential, approximately exponential and heavier than

exponential tails was also made by Boos (1984), who referred to earlier

unpublished work by Breiman, Stone and Gins,

Summarising the results so far, the following general observations

may be made:

1. In cases in the domain of attraction of a Gumbel distribution the

Generalised Pareto/Generalised Extreme Value procedures perform better

than the exponential/Gumbel procedures when the tail is lighter than

- exponential, but the comparison appears to be reversed when the tail is
heavier than exponential. Also in the "heavier than exponential” case the

optimal k is much smaller.

2, In all cases the comparison between the thresheld and

corresponding classical procedure appears to be similar to Fig.1, i.e. the
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classical procedure does better at small k but the threshold procedure
achieves its minimum mean squared error at a larger value of k and is then

superior. The exceptions to this are when bias cancellation is observed.

Gomes (1986) compared the Gumbel and Generalised Extreme Value
methods by simulation, remarking that the Generalised Extreme Value method
seems to do better as higher quantiles are estimated. However, both the
distributions she used for simulation (normal, and a modified form of
Weibull with o=4) are lighter-~tailed than exponential so the present study
suggests her simulations were not extensive enough to support those
conclusions. Boogs (1984) also remarked on the difficulties of the
heavier-than-exponential case, even suggesting that simple nonparametric
estimators might do better in such cases. Another simulation study,
though not directly treating the bias vs. variance aspect of the problem,
led Hosking, Wallis and Wood (1985) to conclude that maximum likelihood
estimation has poor sampling properties in the heavy-tailed (y»>0) case,
and to propose the method of probability weighted moments as an
alternative. All these studies point to the need for a more detailed
theoretical study of the heavy-tailed case, including perhaps the
development of alternative estimators with smaller mean sgquared errors

than maximum likelihood.

So far no indication has been given of the accuracy of the proposed
approximations to the bias. A theoretical way to assess this is as
follows. Suppose we have a very large sample from P" for a given finite
n, or from a threshold distribution for fixed threshold. The parameters
of the fitted model (respectively, Generalised Extreme or Generalised
Pareto) will converge to those values which maximise the expected log

likxelihood of the fitted model under the true distribution. These




31
limiting parameters may be calculated by a combination of numerical
integration and numerical optimisation, and result in exact expressions
for the bias - “exact" in the sense that they do not rely on any
approximations for the distribution function. (They are still only
approximations for finite k.) In Table 1 this is calculated for n=100 or
500 and the distributions used in Pigure 2. Three approximationgs to y are
shown: the crude approximation ¢'(u) of Section 2, the "bias corrected”
approximation obtained from (4.7) or (6.12) and the "exact" value given by
the procedure just described. Also shown are biases for two quantile
estimates where, for N=10000, q, corresponds to p=-0001 (as in Pigure 2)
and q, to p=-0005. These are expressed as a percentage of the absolute
value of the gquantity being estimated. These results show that, although
in most cases our approximations are the right order of magnitude, one
would have to go to even larger samples before they were really accurate.
In one sense this does not matter, because in practice we would not have
the information to obtain the exact biases anyway, so a more important
feature of our results is that they lead to the right qualitative

conclusions.
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9. SUMMARY AND CONCLUSIONS
The main purpose of the paper has been to obtain approximate
expressions for the bias and variance of four established extreme-value
procedures, and to use these to study the optimal value of k and to
compare the four procedures in terms of mean squared error. The studies
have in general supported the qualitative conclusions of simulation
studies by other authors and have also suggested some new aspects. In
particular, threshold procedures tend to require a larger optimal k than
classical procedures, and then to achieve a lower mean squared error.
Concerning the comparison between exponential/Gumbel procedures on the one
hand, and Generalised Pareto/ Generalised Extreme Value procedures on the
other, in many cases the study supports the latter, but not in
heavy-tailed cases in the Gumbel domain of attraction (lognormal, Weibull

with acl).
Important open questions are:

1. Data-based (adaptive) estimation of k. This may be best achieved by
trying to estimate the bias, and then choosing k to minimise the estimated
mean squared error. It seems to me that "general” methods of Dbias
estimation, such as the jackknife and bootstrap, are unlikely to work in
their usual form, in view of the rather specialised nature of the bias
problem, but some modifications to take account of this may be possible.
An asymptotically efficient, but highly artificial, proposal along these
lines was made by Hall and Welsh (1985), in a more restricted setting than
the one congsidered here. The Hall-Welsh result does serve to indicate

what is theoretically possible.

2. Are there better estimation procedures than maximum likelihood? The

well-known asymptotic optimality of maximum likelihood may not apply when
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bjas is taken into account, and indeed Csorgo, Deheuvels and Mason (1985)
have indicated one way to improve it, though again in the more restricted
setting of estimating the Pareto index. However, there may be simpler
estimates than theirs which would have better properties than maximum
likelihood, the probability-weighted moments estimator being presumably a
candidate. Theoretical investigation of other estimators is possible

along the same lines as developed for maximum likelihood estimators in

this paper.

3. Another possibility is to expand the class of model distributions to
something wider than the Generalised Extreme Value of Generalised Pareto
Classes. There is considerable discussion along these lines in parts of
the hydrology literature, the theoretical status of which is ill-defined,
but there are obvious possibilities such as combining extreme wvalue
distributions with a family of transformations. Since this would
inevitably involve increasing the variance of the estimators (because of
the extra parameters), the only theoretical way to assess the idea would

be in terms of some form of trade—off between bias and variance.
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TABLE 1 : EXACT BIAS CALCULATIONS

PERCENT PERCENT
PARENT METHOD N  ESTIMATED y BIAS IN q, BIAS IN q,
DIST.
CRUDE BC EXACT APPROX EXACT APPROX EXACT
" Normal GEV 100 =-.127 -.096 —.101 - .17 - .16 .40 .26
Normal GPD 100 -.127 —-.074 -.089 .16 .06 .31 .20
Lognormal GEV 100 .248 .224 .239 3.15 2.11 - .60 .03
(1)
Lognoimal GPD 100 .248 .200 .222 .56 .43 -1.10 -.31
(1)
Refl.Gamma GEV 100 -.315 -.275 -.266 1.21 3.93 1.60 2.38
(s)
Refl.Gamma GPD 100 -.315 —.267 -.258 1.21 2.06 .85 1.09
(5)
ty GEV 100 .19 .212 .211 -2.08 ~-1.87 - .03 -.09
ty GPD 100 .196 .231 .,225 - .46 -~ .50 .27 .18
Weibull GEV S00 .161 .129 .145 - .74 - .10 - .70 .41
(0.5,0.1)
weibull GPD 500 .161 .099 .127 -1.11 - .33 - .14 -.08
(0.5,0.1)
Weibull GEV 100 -.072 -.055 -.057 - .17 - .13 .22 .11
(1.5,1.0)
Weibull GPD 100 -.072 -.043 ~-.053 .07 .00 .18 .10
(1.5,1.0)
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FIG. 1: COMPARISON OF EXPONENTIAL & GUMBEL PROCEDURES
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